最新人教版七年级上册数学一元一次方程应用题及答案_doc

(文档共12页)  

当前位置: 雨花文库>初中教育>数学>初一数学>最新人教版七年级上册数学一元一次方程应用题及答案_doc


一元一次方程应用题知能点1:市场经济、打折销售问题

(1)商品利润=商品售价-商品成本价(2)商品利润率=

商品利润

商品成本价

×100%

(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?

2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?

3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()

A.45%×(1+80%)x-x=50

B. 80%×(1+45%)x - x = 50

C. x-80%×(1+45%)x = 50

D.80%×(1-45%)x - x = 50

4.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.

5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.

知能点2:方案选择问题

6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:

方案一:将蔬菜全部进行粗加工.

方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.

你认为哪种方案获利最多?为什么?

7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指

市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y

1元和y

元.

(1)写出y

1,y

与x之间的函数关系式(即等式).

(2)一个月内通话多少分钟,两种通话方式的费用相同?

(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?

8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。(1)某户八月份用电84千瓦时,共交电费30.72元,求a.

(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时?•应交电费是多少元?

9.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.

(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.

(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?

10.小刚为书房买灯。现有两种灯可供选购,其中一种是9瓦的节能灯,售价为49元/盏,另一种

是40瓦的白炽灯,售价为18元/盏。假设两种灯的照明效果一样,使用寿命都可以达到2800小时。已知小刚家所在地的电价是每千瓦时0.5元。

(1).设照明时间是x 小时,请用含x 的代数式分别表示用一盏节能灯和用一盏白炽灯的费用。(费用=灯的售价+电费)

(2).小刚想在这种灯中选购两盏。假定照明时间是3000小时,使用寿命都是2800小时。请你设计一种费用最低的选灯照明方案,并说明理由。

知能点3储蓄、储蓄利息问题

(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的20%付利息税

(2)利息=本金×利率×期数 本息和=本金+利息 利息税=利息×税率(20%) (3)%,100⨯=

本金

每个期数内的利息

利润

11. 某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)

12. 为了准备6年后小明上大学的学费20000元,他的父亲现在就参加了教育储蓄,下面有三种教育储蓄方式:

(1)直接存入一个6年期;

(2)先存入一个三年期,3年后将本息和自动转存一个三年期;

(3)先存入一个一年期的,后将本息和自动转存下一个一年期;你认为哪种教育储蓄方式开始存入的本金比较少?

13.小刚的爸爸前年买了某公司的二年期债券4500元,今年到期,扣除利息税后,共得本利和约4700元,问这种债券的年利率是多少(精确到0.01%).

14.(北京海淀区)白云商场购进某种商品的进价是每件8元,销售价是每件10元(销售价与进价

一年 2.25 三年 2.70 六年 2.88

的差价2元就是卖出一件商品所获得的利润).现为了扩大销售量,•把每件的销售价降低x%出售,•但要求卖出一件商品所获得的利润是降价前所获得的利润的90%,则x应等于().A.1 B.1.8 C.2 D.10

15.用若干元人民币购买了一种年利率为10% 的一年期债券,到期后他取出本金的一半用作购物,剩下的一半和所得的利息又全部买了这种一年期债券(利率不变),到期后得本息和1320元。问张叔叔当初购买这咱债券花了多少元?

知能点4:工程问题

工作量=工作效率×工作时间工作效率=工作量÷工作时间

工作时间=工作量÷工作效率完成某项任务的各工作量的和=总工作量=1

16. 一件工作,甲独作10天完成,乙独作8天完成,两人合作几天完成?

17. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?

18. 一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?

19.一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,

然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?

20.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部

分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.21.一项工程甲单独做需要10天,乙需要12天,丙单独做需要15天,甲、丙先做3天后,甲因事

离去,乙参与工作,问还需几天完成?

知能点5:若干应用问题等量关系的规律

(1)和、差、倍、分问题 此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。 增长量=原有量×增长率 现在量=原有量+增长量 (2)等积变形问题

常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变. ①圆柱体的体积公式 V=底面积×高=S ·h =πr 2h

②长方体的体积 V =长×宽×高=abc

22.某粮库装粮食,第一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出20吨放入第二个仓库中,第二个仓库中的粮食是第一个中的7

5。问每个仓库各有多少粮食?

23.一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入

一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14).

24.长方体甲的长、宽、高分别为260mm ,150mm ,325mm ,长方体乙的底面积为130×130mm 2,又知甲的体积是乙的体积的2.5倍,求乙的高?

知能点6:行程问题

基本量之间的关系: 路程=速度×时间 时间=路程÷速度 速度=路程÷时间 (1)相遇问题 (2)追及问题 快行距+慢行距=原距 快行距-慢行距=原距

(3)航行问题 顺水(风)速度=静水(风)速度+水流(风)速度 逆水(风)速度=静水(风)速度-水流(风)速度 抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.

25. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,

(文档共12页)